
Intensity in single-slit diffraction pattern 
 

We consider a monochromatic light passing through a narrow slit from the left to the 

right. Huygens’ principle implies that we have to consider each point in the slit as a 

separate source of spherical wavelets propagating in all directions to the right of the slit. 

The light falls on a  screen which is assumed very far away, so the rays heading to any 

point are nearly parallel. We expect interference from waves originated at different points 

of the slit.  

Here we will discuss a method of predicting the amplitude and intensity of the light 

waves at any point on the interference pattern using the phasor technique that is a little bit 

different than in the text-book. We will find the amplitude and intensity of the wave 

created by interference of large number of waves originated at the slit at some point P at 

the screen. The position of the point P is characterized by its angular position 



 .  

 

Let us divide the slit (see Fig. 1) into very large number 



N  of very thin strips of equal 

size (the width) 



y. We assume that all waves (rays) from a given strip are in phase. 

However, waves from different strips are different in phase. Let us choose the 



y-axis as 



shown in Fig. 1, so that the bottom edge of the slit has



y-coordinate equal 0 and the top 

edge has 



y-coordinate equal 



D. We will characterize the phase of waves from a given 



j -strip due to extra distance traveled by these waves in comparison with waves from the 

bottom strip by 



 j  kl j 
2


y j sin         (1) 

Here 



k  2   is the wave number, 



l j  is the extra-distance traveled to the point P at 

the screen by rays from the 



j -strip, 



y j  is the coordinate of a middle-point of the 



j -strip. 

The electric field 



E  at the point P is sum of electric field vectors of waves coming from 

the slit. We will assume that all coming waves have parallel electric fields with the same 

amplitude 



E0. Then the wave created at the point P as result of interference can be 

written in the form 



E (t)  E0

j1

N

 cos(t  kl0  j )
y

D
         (2) 

One can easy find from (2) the phasor of the sinusoidal wave 



E  



E  E0e
ikl0i j

j1

N

 y

D
 E0eikl0 e

i j

j1

N

 y

D
       (3) 

We calculate (3) by using the limit 



N  and 



y0  and by replacing the sum over 



j  by integral over 



y. As a result, we obtain 



E  E0e
ikl0

1

D
e
i (y)

dy

0

D

           (4) 

where  according to Eq. (1) 



(y) 
2


ysin           (5) 

Substituting (5) into (4) we obtain  
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Thus, the amplitude of the wave created as a result of interference at the point P is equal 



E  E0

sin
Dsin


Dsin



        (7) 

Intensity of the wave is proportional to the square of the wave amplitude 



I CE0
2

sin
Dsin


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
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;     C = const      (8) 

One can see from Eq. (8) that intensity has its maximum at 



  0 when expression in 

brackets in (8) is equal 1. The value of intensity is 



I0 CE0
2

          (9) 

Thus, the wave intensity at the point with angular position 



  has the form 



I  I0
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Dsin


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
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          (10) 

Minima of intensity occur when 



sin Dsin   0 , that means that 



Dsin m ,    



m 1,2...    
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